
Lecture 5: Message Passing & Other

Communication Mechanisms (SR & Java)

• Intro: Synchronous & Asynchronous Message Passing

• Types of Processes in Message Passing

• Examples

– Asynchronous Sorting Network Filter (SR)

– Synchronous Network of Filters: Sieve of Eratosthenes (SR)

– Client-Server and Clients with Multiple Servers with Asynchronous

Message Passing (SR)

– Asynchronous Heartbeat Algorithm for Network Topology (SR)

– Synchronous Heartbeat Algorithm for Parallel Sorting (SR+Java)

• RPC & Rendezvous

– Examples
CA463D Lecture Notes (Martin Crane 2013) 1

Introduction to Message Passing

• Up to now concurrency constructs (critical sections, semaphores,

monitors) have been based on shared memory systems.

• However with network architectures & distributed systems in which

processors are only linked by a communications medium, message

passing is a more common approach.

• In message passing the processes which comprise a concurrent

program are linked by channels.

• If the two interacting processes are located on the same processor,

then this channel could simply be the processor’s local memory.

• If the 2 interacting processes are allocated to different processors,

then channel between them is mapped to a physical communications

medium between the corresponding 2 processors.

CA463D Lecture Notes (Martin Crane 2013) 2

Message Passing Constructs

• There are 2 basic message passing primitives, send & receive

send primitive: sends a message (data) on a specified

channel from one process to another,

receive primitive: receives a message on a specified channel

from other processes.

• The send primitive has different semantics depending on

whether the message passing is synchronous or asynchronous.

• Message passing can be viewed as extending semaphores to

convey data as well as synchronisation.

CA463D Lecture Notes (Martin Crane 2013) 3

Synchronous Message Passing

• In synchronous message passing each channel forms a direct link

between two processes.

• Suppose process A is sending data to process B:

When process A executes send primitive

it waits/blocks until process B executes

its receive primitive.

• Before the data can be transmitted both A & B

must ready to participate in the exchange.

• Similarly the receive primitive in one process

will block until the send primitive in the

other process has been executed.

CA463D Lecture Notes (Martin Crane 2013) 4

Asynchronous Message Passing
• In asynchronous message passing receive has the same

meaning/behaviour as in synchronous message passing.

• The send primitive has different semantics.

• This time the channel between processes

A & B isn’t a direct link but a message queue.

• Therefore when A sends a message to B, it is

appended to the message queue associated

with the asynchronous channel, and A continues.

• To receive a message from the channel, B executes

a receive removing the message at the head

of the channel’s message queue and continues.

• If there is no messages in the channel the receive primitive blocks

until some process adds a message to the channel.
CA463D Lecture Notes (Martin Crane 2013) 5

Additions to Asynchronous Message Passing

• Firstly, some systems implement an empty primitive which tests

if a channel has any messages and returns true if there are no

messages.

• This is used to prevent blocking on a receive primitive when

there is other useful work to be done in the absence of

messages on a channel.

• Secondly, most asynchronous message passing systems

implement buffered message passing where the message queue

has a fixed length.

• In these systems the send primitive blocks on writing to a full

channel.

CA463D Lecture Notes (Martin Crane 2013) 6

Types of Processes in Message Passing

Programs
• Filters:

– These are data transforming processes.

– They receive streams of data from their input channels, perform

some calculation on the data streams, and send the results to

their output channels.

• Clients:

– These are triggering processes.

– They make requests from server processes and trigger reactions

from servers.

– The clients initiate activity, at the time of their choosing, and often

delay until the request has been serviced.

CA463D Lecture Notes (Martin Crane 2013) 7

Types of Processes in Message Passing

Programs (cont’d)
• Servers:

– These are reactive processes.

– They wait until requests are made, and then react to the request.

– The specific action taken depends on the request, the parameters

of the request and the state of the server.

– The server may respond immediately or it may have to save the

request and respond later.

– A server is a non-terminating process that often services more

than one client.

• Peers:

– These are identical processes that interact to provide a service or

solve a problem.
CA463D Lecture Notes (Martin Crane 2013) 8

Message Passing Example 1:An

Asynchronous Sorting Network Filter

CA463D Lecture Notes (Martin Crane 2013) 9

Merge

Merge

Merge

Merge

Merge

This consists of a series of merge filters.

Message Passing Example 1:An

Asynchronous Sorting Network Filter

CA463D Lecture Notes (Martin Crane 2013) 10

const EOS := high (int) # end of stream marker
op stream1 (x:int), stream2 (x:int), stream3 (x:int)

process merge
var v1, v2:int
receive stream1 (v1); receive stream2 (v2)
do v1 < EOS and v2 < EOS ->

if v1 <= v2 ->
send stream3 (v1)
receive stream1 (v1)

[] v2 < v1 ->
send stream3 (v2)
receive stream2 (v2)

fi
od

if v1 = EOS ->
send stream3 (v2)

[] else ->
send stream3 (v1)

fi
send stream3 (EOS)

end

Message Passing Example 2:

Synchronous Network of Filters: Sieve

of Eratosthenes
• This is a method for finding primes where each prime

found acts as a sieve for multiples of it to be removed from

the stream of numbers following it.

• The trick is to set up a pipeline of filter processes, of which

each one will catch a different prime number.

CA463D Lecture Notes (Martin Crane 2013) 11

Message Passing Example 2: Synchronous

Network of Filters: Sieve of Eratosthenes

CA463D Lecture Notes (Martin Crane 2013) 12

op Sieve [L] (x:int)

process p1
var p:int := 2, i:int
send out all odd numbers
fa i:=3 to N by 2 -> call sieve [1] (i) af

end

process p(i:= 2 to L)
var p:int, next:int

receive sieve [i-1] (p)
do true ->

receive sieve [i-1] (next)
pass on next if it is not a multiple of p
if (next mod p) != 0 -> call sieve [i] (next) fi

od # kick off another process
end

• This program will terminate in deadlock.

• How can you stop this? (hint: use a sentinel, see previous filter example).

Example 3(a): Client-Server with

Asynchronous Message Passing

• The following is an outline of a resource allocation server

and its clients.

• Each client request a resource from a central pool of

resources, uses it and releases it when finished with it.

• We assume the following procedures are already written:

get_unit and return_unit find and return units to

some data structure

• And that we have the list management procedures:

list_insert, list_remove & list_empty

CA463D Lecture Notes (Martin Crane 2013) 13

Example 3(a): Client-Server

with Asynchronous Message

Passing (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 14

type op_kind = enum (ACQ, REL)
const N:int := 20
const MAXUNITS:int := 5
op request (index, op_kind, unitid:int)
op reply [N] (unitid:int)

process Allocator
var avail:int := MAXUNITS
var index:int, oper:op_kind, unitid:int
some initialisation code
do true ->

receive request (index, oper, unitid)
if oper = ACQ ->

if avail > 0 -> # any available?
avail := avail - 1
unitid = get_unit ()
send reply [index] (unitid)

[] avail = 0 -> # none available
list_insert (pending, index)

put off for now
fi

[] oper = REL->
if list_empty(pending)-> # postponed?

avail := avail+1
nothing postponed

return_unit (unitid)
[] not list_empty (pending) ->

sth postponed
index := list_remove(pending)

retrieve it
send reply [index] (unitid)

reply to client
fi # index with unitid

fi
od

end

process client (i:= 1 to N)
var unit:int

send request (i, ACQ, 0)# call request
receive reply[i](unit)

rcv reply on my channel
with a designated unit

use unit and release it
send request (i, REL, unit)

...
end

Example 3(b): Multiple Servers

• This example is a file server with multiple servers.

• When a client wants to access a file, it needs to open the file,

access the file (read or write) and then closes the file.

• With multiple servers it is relatively easy to implement a system in

which several files can be open concurrently.

• This is done by allocating one file server to each open file.

• A separate process could do the allocation, but as each file server

is identical and the initial requests (‘open’) are the same for each

client, it’s simpler to have shared communications channel.

• This is an example of conversational continuity.

• A client starts a “conversation” with a file server when that file

server responds to a general open request.

• The client continues the “conversation” with the same server until

it is finished with the file, and hence the file server.
CA463D Lecture Notes (Martin Crane 2013) 15

Example 3(b):

Multiple

Servers (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 16

type op_kind = enum (READ, WRITE, CLOSE)
type result_type = enum (...)
const N:int := 20, M:int := 8
op open (fname:string[20], c_id:int) # Cl->Se
op access [M](svce:op_kind, ...) # Cl->Se
op open reply [N] (s_id:int) # Se->Cl
op access_reply[N](res:result_type) # Se->Cl

process File_Server (i:= 1 to M)
var svce:op_kind, clientid:int
var fname:string [20]
var more:bool := false

do true ->
receive open (fname, clientid)
send open_reply [clientid] (i)
more := true

do more = true ->
receive access [i] (svce, ...)
if svce = READ -> # process read req
[] svce = WRITE-> # process write req
[] svce = CLOSE-> # close file
more := false
fi

send access_reply [clientid] (results)
od

od
end

process client (i:= 1 to N)
var server:int # server channel’s id

send open(“myfile”,i)
i wants to open‘myfile’

receive open_reply [i] (server)
reply from server

send access [server] (...)
reply comes on server channel

receive access_reply [i] (results)
reply on my channel with results

end

Asynchronous Heartbeat Algorithms

• Heartbeat algorithms are a typical type of process interaction

between peer processes connected together by channels.

• They are called heartbeat algorithms because the actions of each

process is similar to that of a heart; first expanding, sending

information out; and then contracting, gathering new information in.

• This behaviour is repeated for several iterations.

• An example of an asynchronous heartbeat algorithm is the algorithm

for computing the topology of a network.

CA463D Lecture Notes (Martin Crane 2013) 17

Message Passing Algorithms Example 4:

Asynchronous Heartbeat Algorithm for Computing

Network Topology

• Each node has a processor and initially only knows about the other

nodes to which it is directly connected.

• Algorithm goal is for each node to determine the overall n/w topology.

• The two phases of the heartbeat algorithm are:

1. transmit current knowledge of network to all neighbours, and

2. receive the neighbours’ knowledge of the network.

• After the first iteration the node will know about all the nodes

connected to its neighbours, that is within two links of itself.

• After the next iteration it will have transmitted, to its neighbours, all the

nodes with 2 links of itself; and it will have received information about

all nodes with 2 links of its neighbours, that is within 3 links of itself.

• In general, after i iterations it will know about all nodes within (i+1) links

of itself.
CA463D Lecture Notes (Martin Crane 2013) 18

Ex 4: Asynchronous Heartbeat Algorithm for

Computing Network Topology: Algorithm Operation

CA463D Lecture Notes (Martin Crane 2013) 19

1

2

3

4

5

6
7

8

Firstly from Node 1’s Point of View

Next from Node 8’s Point of View

….and Node 1 is done!

….and Node 8 is done!

1

2

3

4

5

6
7

8

Example 4: Asynchronous Heartbeat

Algorithm for Network Topology(Cont’d)

• How many iterations are necessary?

• Since the network is connected, every node has at least one

neighbour.

• If we store the known network topology at any given stage in an

nxn matrix top where

top[i,j] = true if a link exists between node i and j,

then a node knows about the complete topology of the network

when every row in top has at least one true value.

• At this point the node needs to perform one more iteration of the

heartbeat algorithm to transmit any new information received from one

neighbour to its other neighbours.

CA463D Lecture Notes (Martin Crane 2013) 20

Ex 4: Asynchronous

Heartbeat Algorithm

for Network

Topology(Cont’d)

CA463D Lecture Notes (Martin Crane 2013) 21

op topol[N](sender:int,done:bool,top[N,N]:bool)

process node_heartbeat (i := 1 to N)
var links [N]:bool
var active[N]:bool #neighbors still active
var top [N,N]:bool := ([N * N] false)
var row_ok:bool
var done:bool := false
var sender:int, qdone:bool, newtop [N,N]:bool
initialise links to neighbours
...
initialise active my row to my neighbors
active := links
top [i,1:N] := links
do not done ->
send local knowledge to all neighbors

fa j:= 1 to N st links[j] ->
send topol [j] (i, done, top)

af
receive local knowledge of the neighbors
and or it with our own knowledge

fa j:= 1 to N st links[j]->
receive topol[j](sender, qdone, newtop)
top := top or newtop
if qdone -> active [sender] := false fi

af
check if all rows in top have a ‘true’
done := true
fa j:= 1 to N st done ->

row_ok := false
fa k:= 1 to N st not row_ok ->
if top [j,k]= true -> row_ok=true fi

af
if row_ok = false -> done = false fi

af
od

send full topology to all active n’bors

fa j:= 1 to N st active [j] ->
send topol [j] (i, done, top)

af

receive message from each to clear channels
fa j:= 1 to N st active [j] ->

receive topol[j](sender, qdone, newtop)
af

end

M
a

in
 L

o
o

p

Ex 4: Asynchronous Heartbeat Algorithm for

Network Topology(Cont’d)

• If m is the maximum number of neighbours any node has, and D is

the n/w diameter1, then the number of messages exchanged must

be less than .

• A centralised algorithm, in which top was held in memory shared

by each process, requires only 2n messages. If m and D are small

relative to n then there is relatively few extra messages.

• In addition, these messages must be served sequentially by the

centralised server. The heartbeat algorithm requires more

messages, but these can be exchanged in parallel.

CA463D Lecture Notes (Martin Crane 2013) 22

2 * *(1)n m D +

.

1 i.e. the max. value of the minimum number of links between any two nodes

Ex 4: Asynchronous Heartbeat Algorithm for

Network Topology(Cont’d)

• All heartbeat algorithms have the same basic structure; send

messages to neighbours, and then receive messages from

neighbours.

• A major difference between the different algorithms is

termination. If the termination condition can be determined

locally, as above, then each process can terminate itself.

• If however, the termination condition depends on some global

condition, each process must iterate a worst-case number of

iterations, or communicate with a central controller monitoring the

global state of the algorithm, and issues a termination message to

each process when required.

CA463D Lecture Notes (Martin Crane 2013) 23

.

• To sort an array of n values in parallel using a synchronous

heartbeat algorithm, we need to partition the n value equally

among the processes.

• Assume that we have 2 processes, P1 and P2, and that n is even.

• Each process initially has n/2 values and sorts these values into

non descending order, using a sequential sort algorithm.

• Then at each iteration P1 exchanges it largest value with P2’s

smallest value, and both processes place the new values into

the correct place in their own sorted list of numbers.

• Note: since both sending & receiving block in synchronous

message passing, P1 and P2 cannot execute the send, receive

primitives in the same order (as could in asynchronous message

passing).
CA463D Lecture Notes (Martin Crane 2013) 24

Example 5: Synchronous Heartbeat Algorithm:

Parallel Sorting

• Demonstration of Odd/Even Sort for 2 Processes:

CA463D Lecture Notes (Martin Crane 2013) 25

Example 5(a): Synchronous Heartbeat Algorithm:

Parallel Sorting: Algorithm Operation (Cont’d)

CA463D Lecture Notes (Martin Crane 2013) 26

op channel_1 (x:int)
op channel_2 (x:int)

process P1
var a[N/2]:int, new:int
var largest:int := N/2

sort a into non-descending order

call channel_2 (a[largest])
receive channel_1 (new)

do a[largest] > new ->
a[largest] := new
fa i:=largest downto 2 st a[i] > a[i-1] ->

a[i] :=: a[i-1] #swap
af
call channel_2(a[largest])
send my largest along ch_2
receive channel_1 (new)
rcv its smallest along ch_1

od
end

process P2
var a[N/2]:int, new:int
var largest:int := N/2;

sort a into non-descending order

receive channel_2 (new)
call channel_1 (a[1])

do a[1] < new ->
a[1] := new
fa i:= 2 to largest st a[i] < a[i-1] ->

a[i] :=: a[i-1]#swap
af
receive channel_2 (new)
rcv its largest along ch_2
call channel_1 (a[1])
send my smallest along ch_1

od
end

Example 5(a): Synchronous Heartbeat Algorithm:

Parallel Sorting: Code

• Can extend this to k processes by initially dividing the array so

that each process has n/k values which it sorts using a

sequential algorithm.

• Then we can sort the n elements by repeated applications of the

two process compare and exchange algorithm.

• On odd-numbered applications:

– Every odd-numbered process acts as P1, and every even numbered

process acts as P2.

– Each odd numbered process P[i] exchanges data with process P[i+1].

– If k is odd, then P[k] does nothing on odd numbered applications.

• On even-numbered applications:

– Even-numbered processes act as P1, odd numbered processes act as P2.

– P[1] does nothing, and P[k] does nothing, even if k is even.
CA463D Lecture Notes (Martin Crane 2013) 27

Example 5(a): Synchronous Heartbeat Algorithm:

Parallel Sorting: (Cont’d)

• The SR algorithm for odd/even exchange sort on n processes

can be terminated in many ways; two of which are:

1. Have a separate controller process who is informed by each

process, each round, if they have modified their n/k values.

– If no process has modified its list then the central controller replies with

a message to terminate.

– This adds an extra 2k messages overhead per round.

2. Execute enough iterations to guarantee that the list will be

sorted. For this algorithm it requires k iterations.

CA463D Lecture Notes (Martin Crane 2013) 28

Ex 5 (a): Synchronous Heartbeat Algorithm:

Parallel Sorting: (Cont’d)

• Demonstration of

Odd/Even Exchange Sort

for k Processes:

CA463D Lecture Notes (Martin Crane 2013) 29

Example 5(a):

Odd/Even Exchange

Sort: Algorithm

Operation (Cont’d)

Ex. 5(b) Odd/Even Exchange Sort for n Processes

in Java

CA463D Lecture Notes (Martin Crane 2013) 30

public class OddEvenSort {
public static void main(String a[]){

int i;
int array[] = {12,9,4,99,120,1,3,10,13};
odd_even(array,array.length);
}

public static void odd_even(int array[], int n){
for (int i = 0; i < N/2; i++){

/* 1st evens: all these can happen in parallel */
for (int j = 0; j+1 < n; j += 2)
if (array[j] > array[j+1]) {

int T = array[j];
array[j] = array[j+1];
array[j+1] = T;

}

/* Now odds: all these can happen in parallel */
for (int j = 1; j+1 < array.length; j += 2)
if (array[j] > array[j+1]) {

int T = array[j];
array[j] = array[j+1];
array[j+1] = T;

}
}

}
}

Guarded Synchronous Message Passing

• Since both the send and receive primitives in synchronous

message passing block, it is generally desirable not to call them

if you have other useful things to be done.

• An example of this is the Decentralised Dining Philosophers

Problem where each philosopher has a waiter.

– It is the waiter processes that synchronises access to the shared

resources (forks).

– When a resource (fork) has been used it is marked as dirty.

– When a waiter is requested for a fork, it checks if it is not being used

and it is dirty.

– It then cleans the fork and gives it to the requesting waiter.

– This protocol prevent a philosopher from being starved by the waiter

removing one fork before the other fork arrives.

– This algorithm is also called the hygienic philosophers algorithm.
CA463D Lecture Notes (Martin Crane 2013) 31

Guarded Synchronous Message Passing

(Cont’d)
• The guarded form of the receive command in SR is

in op_name st expression -> ... ni

• and the nondeterministic version is

in op_name1 st expression1 -> ...

[] op_name2 st expression2 -> ...

[] op_name3 st expression3 ->

[] ...

[] else -> ...

ni

• The else block is executed when there is no non blocking in

statement.

CA463D Lecture Notes (Martin Crane 2013) 32

Ex 5: Hygenic

Philosphers

33

op fork[5]()
op phil_hungry[5](),phil_eat[5](),phil_full[5]()
process waiter (i := 1 to 5)

var eating:bool:= false, hungry:bool := false
var haveL, haveR:bool
var dirtyL:bool:= false, dirtyR:bool := false

if i = 1 -> haveL := true; haveR := true;
dirtyL:=true; dirtyR:= true

[] i >1 and i < 5->haveL:=false;haveR:= true;
dirtyR:= true

[] i = 5 -> haveL := false; haveR := false
fi

do true ->
in phil_hungry [i] () ->

receive a call from my philo
hungry:=true # set ‘hungry’ as true

[] fork [i mod 5] () st
rcv a call from lh side waiter

haveL and not eating and dirtyL ->
not eating/using it

haveL := false; dirtyL := false
clean & return my lh fork

[] fork [(i+1) mod 5] () st
rcv a call from rh side waiter

haveR and not eating and dirtyR ->
not eating/using it

haveR := false; dirtyR := false
clean & return my rh fork

[] phil_full [i] () ->
rcv a ‘full’ call from my philo

eating := false # not hungry

[] else -> # can do some things at random
if hungry and haveL and haveR ->
have all my philo needs to eat

hungry := false; eating := true
dirtyL := true; dirtyR := true
call phil_eat [i] ()

tell my philo to eat

[] hungry and not haveL ->
have all except lh form

call fork [i mod 5] ()
call lh waiter for my fork
block until call comes

haveL := true

[] hungry and not haveR ->
have all except rh fork

call fork [(i+1) mod 5]
call rh waiter for my fork

haveR := true
fi

ni
od

end

process philosopher (i:= 1 to 5)
do true ->

call phil_hungry [i] ()
tell my waiter ‘I’m hungry!’
receive phil_eat [i] ()
block until this reply comes, then eat
call phil_full [i] ()
tell my waiter ‘I’m full!’ then think…

od
end

The duality between Monitors and

Message Passing
• Have already seen

relationship

between

semaphores and

monitors.

• As message passing

is just another

solution concurrent

processing problem,

should be a

relationship

between message

passing & monitors.
CA463D Lecture Notes (Martin Crane 2013) 34

Monitor-Based Programs Message-Based Programs

permanent variables local server variables

procedure identifiers
request channels and

operation kinds

procedure call send request;

receive reply

monitor entry receive request

procedure return send reply

_wait statement
save ‘pending’ request

_signal statement retrieve and process

‘pending’ request

procedure bodies arms of “case” statement

on operation kinds

cf Reader-Writer Problem c.f. ASMP-Client Server

Message Passing in Java

• Java has no built-in support for message passing

• But it does contain as standard the java.net package

• This supports low-level datagram communications & high

level stream-based communications with sockets.

• Java is particularly suited to the client/server paradigm.

Here is a remote file reader implemented in Java.

CA463D Lecture Notes (Martin Crane 2013) 35

File Reader Server Code

CA463D Lecture Notes (Martin Crane 2013) 36

import java.io.*;
import java.net.*;
public class FileReaderServer {

public static void main(String[] args) {
try {

ServerSocket listen = new ServerSocket (9999); // create server socket, listen on 9999
while (true) {
System.out.println (“waiting for connection”); // blocks till client reqs connection
Socket socket = listen.accept (); // applies buffering to some char inputstream
BufferedReader from_client =

new BufferedReader(new InputStreamReader (socket.getInputStream ());
PrintWriter to_client = new PrintWriter(socket.getOutputStream ());
String filename = from_client.readLine ();
File inputFile = new File (filename);

// first check that file exists, if not close up
if (!inputFile.exists ()) {

to_client.println (“cannot open ” + filename);
to_client.close ();
from_client.close ();
socket.close ();
continue; }

// read lines from file & send to the client
System.out.println (“reading ” + filename);
BufferedReader input =new BufferedReader (new FileReader (inputFile));
String line;
while ((line = input.readLine ()) != null)

to_client.println (line);
to_client.close ();
from_client.close ();
socket.close ();

}
}

catch (Exception ex){

System.err.println (ex);

}

}

}

File Reader Client Code

CA463D Lecture Notes (Martin Crane 2013) 37

import java.io.*;
import java.net.*;
public class Client {

public static void main(String[] args) {
try {

// read in command line arguments
if (args.length != 2) {
System.out.println (“need host and filename”);
System.exit (1);

}
String host = args [0];
String filename = args [1];

// open socket to host on port 9999
Socket socket = new Socket (host, 9999);

// applies buffering to some character inputstream
BufferedReader from_server =new

BufferedReader (new InputStreamReader (socket.getInputStream ()));
PrintWriter to_server = new PrintWriter (Socket.getOutputStream ());

// send filename to server, read & print lines from server until its closes connection
to_server.println (filename);
to_server.flush ();

String line;
while ((line = from_server.readLine ()) != null)

System.out.println (line);
}
catch (Exception ex);
{

System.err.println (ex);
}

}
}

Alternative Communication Methods:

Remote Procedure Call (RPC)

CA463D Lecture Notes (Martin Crane 2013) 38

• Message passing is powerful enough to handle all four kinds of

concurrent processes (filters, clients, servers and peers).

• However, it can be cumbersome when coding client/server programs

because information in channels flows in one direction and clients and

servers require a two-way information flow between them.

• Therefore, there have to be two explicit message exchanges on two

different channels.

• In addition each client needs a different reply channel leading

(potentially) to a lot of channels and send/receive statements.

• Remote Procedure Calls (RPC) provide an ideal notation for

programming client/server systems.

• RPCs are a combination of some of the ideas of the monitor and

synchronous message passing approaches.

• RPCs are a two-way communication mechanism where the client

invokes an operation in the server.

Remote Procedure Call (RPC) (Cont’d)

CA463D Lecture Notes (Martin Crane 2013) 39

• The caller of an RPC blocks until the server operation has been

executed to completion and has returned its results.

• As far as the client is concerned, RPCs resemble sequential

procedure calls both syntactically and semantically.

• The client does not care if the RPC is serviced by an operation on

the same processor or another processor.

• Each operation is serviced by a procedure in the server.

• Each invocation to an operation is handled by creating a new

process to handle each call.

Remote Procedure Call (RPC) (Cont’d)

CA463D Lecture Notes (Martin Crane 2013) 40

• The RPC programming component is the module. A module contains

both processes and procedures.

• Processes in a module can call procedures within the module, or call

procedures in other modules using the RPC mechanism.

• The important point about modules is that each module is allowed

to exist in a different address space. (Processes in the same address

space are called lightweight threads.)

• A module has two sections:

1. a specification part that contains the definitions of the publicly

accessible procedures, and

2. a body part that contains the definition of these procedures, as

well as local data, initialisation code, local procedures and local

processes

CA463D Lecture Notes (Martin Crane 2013) 41

module Stack
type result = enum (OK, OVERFLOW, UNDERFLOW)
op push (item:int) returns r:result
op pop (res item:int) returns r:result

body Stack (size:int)
var store [1:size]:int, top:int := 0
proc push (item) returns r

if top < size ->
store[++top] := item
r := OK

[] top = size ->
r := OVERFLOW

fi
end
proc pop (item) returns r

if top > 0 ->
item := store[top--]
r := OK

[] top = 0 ->
r := UNDERFLOW

fi
end

end Stack

resource Stack_User

import Stack
var x: Stack.result
var s1, s2: cap Stack
var y:int

s1 := create Stack(10)
s2 := create Stack(20)
...
s1.push (4); s1.push (37); s2.push (98)
if (x := s1.pop(y)) != OK -> ... fi
if (x := s2.pop(y)) != OK -> ... fi
...

end

Example 6: Implementing Stacks with RPCs.

Synchronisation in Modules

• The RPC is purely a communication mechanism to allow for the

simpler expression of client/server programs.

• There is some degree of implicit synchronisation in that the

caller process is blocked until the remote process is completed.

• We also need some means to synchronise the processes within

the module.

• This allows us to assume that processes within a module

execute concurrently.

• The simplest way is to use semaphores.

• As an example consider following timer server module (in

pseudo-SR) providing timing services to clients via RPCs.

CA463D Lecture Notes (Martin Crane 2013) 42

CA463D Lecture Notes (Martin Crane 2013) 43

module Time_Server
op get_time () returns time:int
op delay (interval:int, id:int)

body Time_Server
var time_of_day:int := 0
sem m := 1 # mutual exclusion semaphore
sem d[N]:=([N] 0) # private delay semaphores

proc get_time () returns time
time := time_of_day

end

proc delay (interval, id)
var wake_time:int:=time_of_day + interval

P(m)
priority_insert_list(wake_list,wake_time,id)
V(m)
P(d[id])

end

process clock
var wake_id:int

do true -> # start hardware timer
P(m) # wait for interrupt
time_of_day++
do time_of_day>=first_entry(wake_list)

wake_id := remove_list (wake_list)
V(d[wake_id])

od
V(m)

od
end

end Time_Server

Example 7: Time Server with RPCs.

Rendezvous

• The RPC mechanism is simply an intermodule communication

mechanism. In the module we still need to provide synchronisation.

• The rendezvous mechanism combines the actions of servicing a call

with the processing of the information conveyed by the call.

• With rendezvous, a process exports operations that can be called by

other processes.

• As in RPC, a process can invoke an operation by calling the operation.

• The key difference between RPC and rendezvous is that the client call

to the operation is serviced by an existing server process.

• The server process rendezvous with the client calling the operation

by means of executing an in statement.

• So a server uses the in statement to wait for, then act on a single call,

servicing calls one-at-a-time rather than concurrently.

CA463D Lecture Notes (Martin Crane 2013) 44

Rendezvous (Cont’d)
• In SR rendezvous is accomplished by means of the in statement.

• The general form of the in statement is:

• Each arm of in is a guarded operation; the part before the -> is

called the guard

CA463D Lecture Notes (Martin Crane 2013) 45

new instance

of server

process

call

call

in
server

process

(body of in)

RPC

in operation (formals_1)
st sync_expr by sched_expr -> block

[] operation (formals_2)
st sync_expr by sched_expr -> block

...
[] else -> block
ni

RPC Rendezvous

Rendezvous (Cont’d)

• We have seen the synchronisation expression already with guarded

synchronised message passing.

• Since the scope of the operation’s formals is the entire guarded

operation1, the synchronisation/scheduling expression can depend

on the formals’ value & hence on the values of the arguments of the

call.

1. If there is no scheduling expression and several guards are satisfied (the

synchronisation expression is true and there is a call to the operation) one of

them is chosen nondeterministically.

2. Of the non-deterministically chosen guard, if there are several invocations,

and no scheduling expression, the in statement services the oldest

invocation that makes the guard succeed.

3. If there is a scheduling expression, then the in statement services the

invocation of the guard which minimises the scheduling expression.

CA463D Lecture Notes (Martin Crane 2013) 46

RPC

1 Each arm of in is a guarded operation; the part before the -> is called the guard

Example 8: Time Server using Rendezvous

CA463D Lecture Notes (Martin Crane 2013) 47

module Time_Server
op get_time () returns time:int
op delay (wake_time:int)
op tick () # called by clock interrupt handler

body Time_Server
process time

var time_of_day:int := 0

do true ->
in get_time () returns time ->

time := time_of_day

[] delay (wake_time)
st wake_time <= time_of_day -> skip

[] tick () -> time_of_day++
ni

od
end

end

Example 9: Shortest Job Next Allocator using

Rendezvous.

CA463D Lecture Notes (Martin Crane 2013) 48

module SJN_Allocator
op request (time:int), # request for a certain length of time

op release ()

body SJN_Allocator
process sjn

var free:bool := true

do true ->
in request (time) st free by time ->

free := false # case 3 above: minimise scheduling expr

[] release () ->
free := true

ni
od

end
end

Example 10: Bounded Buffer using Rendezvous

CA463D Lecture Notes (Martin Crane 2013) 49

module Bounded_Buffer
op deposit (item:int)
op fetch () returns item:int

body Bounded_Buffer (size:int)
var buffer [1:size]:int
var count:int := 0, front:int := 0, rear:int := 0

process worker
do true ->
in deposit (item) st count < size ->

buffer [rear] := item
rear := (rear +1) mod size
count++

[] fetch () returns item st count > 0 ->
item := buffer [front]
front := (front + 1) mod size
count--

ni
od

end
end

• In this example the synchronisation expressions are used to prevent

overflow/underflow occurring in the buffer.

Lecture 6: Message Passing Interface

• Introduction

• The basics of MPI

• Some simple problems

• More advanced functions of MPI

• A few more examples

CA463D Lecture Notes (Martin Crane 2013) 50

